
Optimizing CNN-based Object Detection Algorithms on
Embedded FPGA Platforms

Ruizhe Zhao1, Xinyu Niu1, Yajie Wu2, Wayne Luk1, and Qiang Liu3

1 Imperial College London
{ruizhe.zhao15,niu.xinyu10,w.luk}@imperial.ac.uk

2 Corerain Technology
james.wu@corerain.com

3 Tianjin University
qiangliu@tju.edu.cn

Abstract. Algorithms based on Convolutional Neural Network (CNN) have re-
cently been applied to object detection applications, greatly improving their per-
formance. However, many devices intended for these algorithms have limited
computation resources and strict power consumption constraints, and are not suit-
able for algorithms designed for GPU workstations. This paper presents a novel
method to optimise CNN-based object detection algorithms targeting embedded
FPGA platforms. Given parameterised CNN hardware modules, an optimisation
flow takes network architectures and resource constraints as input, and tunes hard-
ware parameters with algorithm-specific information to explore the design space
and achieve high performance. The evaluation shows that our design model ac-
curacy is above 85% and, with optimised configuration, our design can achieve
49.6 times speed-up compared with software implementation.

1 Introduction

Object detection is a fundamental and difficult computer vision problem that requires
the solution not only to tell what the image is about, but also to recognise the ob-
jects inside the image. A typical object detection algorithm consists of two major steps:
bounding boxes regression and inner object classification. Traditional approaches like
sliding window and region-based algorithms suffer from low accuracy and long ex-
ecution time. Recently, several new CNN-based algorithms, which inherit successful
image classification CNN architectures (e.g. VGGNet, GoogLeNet, etc.) and integrate
them into object detection problem, beat old ones in accuracy (best mean average preci-
sion 83.6% on PASCAL VOC 2007 from R-FCN[3]) and in execution time (155 frames
per second for Fast YOLO[9]).

While these state-of-the-art CNN-based object detection algorithms look promising,
they may not be suitable to be deployed on embedded systems without modification.
There are three main challenges: (1) Most of the CNN architectures for object detec-
tion algorithms do not have identical layer parameters (e.g. different convolution layers
can have different kernel sizes, such as 3× 3, 7× 7 and 11× 11), which increases the
difficulty of designing generic hardware modules that can be adapted to varying param-
eters. (2) Object detection algorithms use deep and complex CNN architectures, which

1

makes it hard to fit the network into an FPGA and to decide the optimal parameters of
hardware modules. (3) Multiple backbone CNN architectures are available to an ob-
ject detection algorithm, and the more accurate an architecture can achieve, the more
hardware resources it will require.

Our main contribution in this paper is a CNN accelerator design customised for ob-
ject detection algorithms on an embedded FPGA platform. This design can tackle those
three aforementioned challenges: (1) This design is built upon parameterised hardware
modules that can be configured for different layer parameters. (2) We develop design
models for estimating resource usage of deep CNN architectures. (3) We present an
optimisation flow that treats two CNN-based object detection algorithms (YOLO and
Faster RCNN) and their backbone CNN architectures as candidates, in order to find the
optimal hardware design under different optimisation targets (e.g. speed or accuracy).
At the end of this paper, we provide evaluation results for both the design model accu-
racy and the performance of the optimal hardware design. To the best of our knowledge,
this is the first work to support end-to-end development of CNN-based object detection
applications with FPGA accelerators.

2 Background and Related Work

Background. A typical CNN contains multiple computation layers which are concate-
nated together. There are 3 different kinds of layers that are frequently found in CNN
architectures: Convolution layer (conv layer), fully-connected layer (fc layer), and max
pooling layer (pooling layer). Details of these three layers are as follows.

1. Convolution layer mainly performs convolution operation between the input ma-
trix - a representation for the input image or a feature map (will be discussed later),
and the convolution kernel - a tiny coefficient matrix.
Given f is the filter index, c is the channel index and C is the total number of
channels, then the convolution layer can be discribed as follows:

O f =
C

∑
c=1

conv(Ic,K f ,c)+b f (1)

This equation means that each output filter will sum up all convolution results be-
tween each channel of the input feature map (Ic) and the kernel (K f ,c). In many
architectures, an activation function can be applied to the result elements, like Rec-
tified Linear Unit (ReLU).

2. Fully-Connected layer is an affine transformation of the input feature vector. Fully-
connected layer contains a single matrix-vector multiplication followed by a bias
offset.

3. Max-Pooling layer performs a sub-sampling method that takes only the maximum
value of each small region in the input matrix. These regions can be constructed by
performing sliding window operations on the input matrix.

4. Feature map is the core idea to understand how CNN works. Every input and
output matrix inside the CNN can be viewed as a feature map, which contains
extracted features for the given image. Image classification aims at transforming

2

the whole feature map into object classification scores by using fully-connected
layers, and object detection aims at exploring region information.

Popular CNN Architectures. There are many CNN architectures, but only a few of
them have been validated on well-known datasets, and they are viewed as state-of-the-
art CNN architectures. The following are some CNN architectures used in object detec-
tion algorithms. (1) VGG16 [11] is one of the VGGNet versions with 16 convolution
layers and 2 pooling layers. An appealing feature of VGGNet is that it has homogeneous
kernel size (3×3) for all convolution layers, and is easy to implement on hardware ac-
celerators. (2) Zeiler-and-Fergus (ZFNet) [15] is the winner of Image-Net Large-Scale
Vision Recognition Challenge (ILSVRC) 2013. It is shallower than the VGGNet, and
has different kernel size for different convolution layers. (3) GoogLeNet [14] is the
winner of ILSVRC 2014. It discovers strategies to reduce the number of parameters in
convolution layers, and replaces the fully-connected layers with the Average Pooling
layer.

CNN-based Object Detection Algorithms. There are two CNN-based object detec-
tion algorithms discussed in this paper. One is YOLO [9], which is designed for real-
time object detection; the other one is Faster RCNN [10], which extends Fast RCNN [5]
with Region Proposal Network (RPN).

Both algorithms have two major components in their network architectures. The first
one is the backbone CNN network, which is extracted from a typical CNN architecture;
the second consists of extra layers that process the backbone CNN’s output feature map.
YOLO can choose to use GoogLeNet or a trimmed version, Faster RCNN can choose
VGG16 or ZFNet as the backbone network.

Faster RCNN introduces extra layers like RoI pooling and RPN. It has been dis-
covered that Faster RCNN is more accurate than YOLO but about 20 times slower.
Deciding which algorithm to use will be introduced in the Section 5.

Related Work. There is much work related to CNN accelerator design on FPGA.
Zhang et al. [16] use the roofline model and data dependencies analysis to optimise a
convolution-only CNN architecture. Qiu et al. [7] successfully deploy VGGNet on an
embedded FPGA platform, with several optimisation techniques like data quantisation
and coefficient matrix decomposition. Chakradhar et al. present their dynamic config-
urable architecture among different CNN layers [2]. They also devise a compiler to
work with their architecture. Farabet et al. [4] introduce NeuFlow, which is a runtime re-
configurable dataflow processor, and a compiler LuaFlow to compile high level dataflow
representation to machine code. Similarly, Suda et al. [12] present a method to compile
CNN configuration files into RTL code. They also introduce a systematic throughput
optimisation methodology for OpenCL-based FPGA CNN accelerators [13]. In this
work, we target object detection applications based on CNN algorithms, and explore
the optimisation flow for various CNN backbone architectures and algorithms.

3

3 Architecture

This section presents the basic architecture of our hardware design, which consists of
two kernels: conv kernel and fc kernel (Fig. 1). Each kernel contains an input buffer
to cache data for further re-use, a computation kernel to perform convolution (conv) or
matrix vector multiplication (fc), and an output buffer to store partial result before the
final result is ready. Here we introduce these three components for each kernel in detail.

Conv
Kernel 2

DDR

Convolution
coefficient

buffer

coeffs
 1

P_V = 2 P_F = 2
Line buffer

Bw = 6 Shared
Registers

Convolve
Kernel

Convolve
Kernel

Convolve
Kernel

Convolve
Kernel

coeffs
2

Conv Kernel 1

Input
buffer

Partial
result
buffer

Accumulate

FC Kernel 1

Input
buffer

P_V = 3

FC Kernel 2

Coefficients

Fig. 1. A general architecture for the convolution layer (kernel size 3× 3) with three different
level of parallelism (PP, PV , and PF). The top-left part is the line buffer.

The computation kernel inside conv contains several convolution kernels running
in parallel, which consists of multiple multipliers followed by an adder tree. Suppose
the width of a coefficient kernel is k, then the number of multipliers is k2, and the depth
of the adder tree is log(k). Multipliers take input from a customised input buffer called
line buffer [1], which enables k data read in one clock cycle from the input feature map.
The other side of the line buffer connects to a larger input buffer that partly or fully
contains the input feature map. Multipliers also connect to another input buffer that
caches coefficients. The output buffer in the conv kernel stores the partial convolution
result. In each cycle the result from the adder tree will be used to update the partial
result. Data type in the conv kernel is single-precision floating-point.

The major functionality of the fc kernel is to perform dot product between the re-
shaped input feature vector and the coefficient matrix. The computation kernel contains

4

several multipliers in parallel to calculate the dot product between each row of the co-
efficient matrix and the feature vector. There are two ways to organise buffers: to cache
the whole feature vector and store no partial output, or to store the partial result and
no input buffer. These two methods are related to the computation sequence we choose
for the fc (row major or column major), which will be discussed in Section 4. Because
there is a feedback loop within the dot product, we use fixed-point data type to enhance
performance. The bit width of the fixed-point data type used is 32, which contains 23
fraction bits and 8 integer bits.

4 Design Model Analysis

This section introduces the design model of conv and fc, which can predict the re-
source usage from given CNN architecture parameters. This design model provides an
important insight into how different strategies and hardware parameters affect the us-
age of hardware resources, and how we could optimise performance with these model
parameters. Table 1 summarises the parameters used in this paper.

Table 1. A summary of the parameters in the design model analysis

Parameter Kernel Description

H

conv

Height of the input feature map
W Width of the input feature map
NC Number of channels in the input feature map
NF Number of filters in the output feature map
k Height and width of the kernel
s Stride of the convolution layer

BH Height of the blocked feature map
BW Width of the blocked feature map

M
fc

Length of the output feature vector
N Length of the reshaped feature vector

The convolution layer design model takes 3 aspects into consideration. The first
is blocking, which divides the input feature map into several parts to reduce buffer
usage; the second is data access pattern, which is related to the exchangeable nested
loops in the convolution layer. The third is computation kernel design re-use. Since
our hardware needs to support some irregular CNN architectures with different kernel
size in each layer, it is effective to re-use the same design.
Blocking Strategy. Blocking is essential when implementing conv kernel on FPGA.
Since convolution layer’s parameters are usually large in real life CNN architectures,
data access patterns often cannot fit their buffer usage into the BRAM resource con-
straints on board. We introduce two parameters BH and BW to indicate the shape of the
blocked input feature map. The following discussions will assume BH ×BW blocking
is applied, i.e. we will use BH and BW rather than H and W to indicate the input feature
map’s shape.
Data Access Pattern. Data access pattern is critical to conv kernel implementation,
because we could choose to compute the convolution either by channels in the feature

5

map, or by filters in the output. Each of these patterns has a trade-off between the input
and output buffer size.

Algorithm 1: Convolution layer computation with two nested loops.
input : A feature map I of shape NC×BH ×BW
input : A coefficient matrix K of shape NF ×NC×BH ×BW
output: A feature map O of shape NF ×BH ×BW /s2

for f ← 0 to NF do
for c← 0 to NC do

O[f]← O[f]+conv(I[c],K[f ,c])

Consider two nested loops in equation 1, one iterates the channel and the other
iterates the filter (Algorithm 1). Thus we have two access patterns: filter major and
channel major. The main difference between these two patterns lies in memory usage.
The following will calculate the input and output buffer size. (1) Filter major: Algo-
rithm 1 presents the filter major pattern. Once we complete the inner reduce add loop of
channels for each output filter f in the filter major pattern, the final result for this filter
will be ready. Thus, we only need to store BHBW/s2, which is the shape of one output
filter, in the output buffer. However, it needs to iterate through all the channels of the in-
put feature map and the associated coefficient kernel, so the input buffer size of the filter
major pattern is (BHBW +k2)NC +kBW , where kBW is the line buffer size. (2) Channel
major: In this case, the channel iteration is the outer loop. After each iteration in the
outer loop, only partial results for all NF filters are available and they will be updated in
the following iterations. Thus the output buffer is required to have size NF ×BHBW/s2.
For the input buffer, only one channel of the input feature map needs to be cached, but
all the coefficients for this channel should also be stored in the input buffer. Hence the
input buffer size is BHBW + k2NF + kBW . The line buffer is also required for this case.

Table 2 summarises the buffer usage for these two data access patterns. With these
parameterised analyses, it is convenient to decide which data access pattern should be
used based on the parameter values. In general, although these two patterns have similar
buffer usage, it is better to choose channel major as it has simpler control logic.

Table 2. Summary of two data access patterns

Access Pattern Output Buffer Size Input Buffer Size

Filter major BHBW /s2 (BHBW + k2)NC + kBW
Channel major BHBW /s2×NF BHBW + k2NF + kBW

Kernel Design Reuse. According to state-of-the-art CNN-based object detection al-
gorithms, our CNN architectures should not be restricted to VGG16, other networks
like ZFNet and GoogLeNet which contain convolution layers of different kernel shapes

6

should also be supported in our hardware design. In order to efficiently adapt to differ-
ent kernel size without re-synthesis of the design, we configure the conv kernel with
the largest kernel size at first, and fully reuse it by adding control logic to enable com-
putation with multiple smaller kernels. Fig. 2 illustrates how this adaptive technique
works.

Reg

coeff
FIFO-based line buffers 7x7 Convolution kernel

3x3 convolution
kernel

shared register

Fig. 2. Reusing 7x7 configuration for 3x3 kernel size computation. There are 49 multipliers on
board, and they connect directly to the FIFO line buffer and the coefficient input port. The 7 FIFOs
are split into two groups, each containing 3 FIFOs. At most, we could compute 5 3x3 kernels in
parallel without reconfiguring the 7x7 kernel design. Curved arrows in the figure illustrate how
the register sharing works.

A Fully-Connected layer is implemented as the fc kernel. As mentioned in Sec-
tion 3, fc kernel buffer usage is mainly decided by the computation sequence, which
is either row major or column major: (1) Column major means that we multiply all
the elements in the column of the coefficient matrix to the same input value, and update
the partial output with size M. (2) Row major requires the input vector with length N
to be buffered on-chip, and reuses it to perform dot product with all the rows in the
matrix. According to the discussion above, it is obvious that the computation strategy is
determined by M and N: if M ≥ N, we will use row major; and use column major when
M < N.

7

5 Optimisation Flow

This section presents our optimisation flow for CNN-based object detection algorithms.
The optimisation flow has three major steps: strategy selection, parameter tuning, and
algorithm-specific optimisation.
Strategy Selection. Once we have the CNN network architecture configuration, we
are able to select which strategy to use for each layer. There are two aforementioned
strategies, one is the data access pattern for the conv kernel, and the other one is the
computation sequence for the fc kernel. The selection will be based on this algorithm:
For each layer i,

1. If layer i is a conv layer, then compare the buffer usage of all data access patterns
and find the one uses minimal buffer in total.

2. If layer i is a fc layer, then compare Mi and Ni to decide whether to use the row
major or the column major strategy.

After selecting strategies for each layer, we can derive exact expressions of the
maximum BRAM usage and the maximum level of parallelisation, which are decided
by both Table 2 and fc’s Mi and Ni.
Parameter Tuning. Suppose we are using the channel major data access pattern and
row major strategy, which are suitable for most cases, we need to further tune several
parameters to optimise the amount of parallelism.

1. Pipeline depth (PP): For conv or fc, PP represents the number of kernels to sup-
port in hardware. The supported layers can be connected as a pipeline, with the
output of a layer to be the input for the next layer.

2. Filter width (PF): For conv only, PF represents the number of filters processed in
parallel, which has an upper bound NF .

3. Vector width (PV): For conv or fc, PV represents the amount of input data pro-
cessed in parallel. While computing convolution between one kernel and one chan-
nel’s feature map, it is possible to compute multiple kernels in parallel. This level
of parallelisation can be measured by the width of input vector in each cycle.

Convolution Layer. Based on the above parallelism parameters, we need to modify
the line buffer size, which should be PV BW to support PV read operations in parallel.
Besides, we derive the expression for the on-chip (BW conv

i) and DDR (BW conv
i) band-

width, estimated to be:

BW conv
i = BW out

i +BW in
i = PV ×PF +PF (2)

BW conv
i = BW out

i +BW in
i =

PV ×PF

Fi
+

PV ×PF

Ci
(3)

It is a constrained optimisation problem to find the best P, PF , and PV for a given
FPGA. We model resource usage of our design in two parts:

1. Logic resources. It covers the usage of LUT, FF, and DSP, which will linearly
increase with respect to PP×PF ×PV by a constant factor (Lc) decided by the layer
configuration and the strategy we choose to use.

8

Lconv = Lc(PP×PF ×PV) (4)
2. Memory. Memory usage is decided by two terms, one is buffer size (BSconv), which

can be calculated as follows:

BSconv
i = (BHBW/s2×NF︸ ︷︷ ︸

output buffer

+BHBW + k2NF︸ ︷︷ ︸
input buffer

+ PV BW︸ ︷︷ ︸
line buffer

)×PP (5)

The other is on-chip bandwidth (BW conv
i). Buffer size decides the minimum num-

ber of BRAMs to store the data, and on-chip bandwidth decides the required num-
ber of ports as each BRAM has a limited number of ports to read and write. Thus,
the memory usage for the convolution layer is:

Mconv = max(
BSconv

i ×DW
BRAMsize

,
BW conv

i ×DW
BRAMbandwidth

) (6)

Fully-Connected Layer. The fc kernel can be analysed in a way similar to the conv

kernel. As the fc kernel does not contain filter-wise parallelisation, there are only two
parameters PP and PV to be decided. The logic usage will also linearly increase with
respect to PP×PV , and memory size is decided by Ni as we choose to use row major
strategy. In our design, on-chip bandwidth for fc is simply 2PV . The DDR bandwidth
requirement is to load coefficient data from DDR, and the input and output read and
write at each cycle. Results are shown in Table 3.

Table 3. Summary of resource usage for conv and fc kernels

conv fc

Logic Lc(PP×PF ×PV) L f (PP×PV)

Memory max

(
BSconv

i ×DW
BRAMsize

,
BW conv

i ×DW
BRAMbw

)
max

(
Ni×DW

BRAMsize
,

2PV ×DW
BRAMbw

)

DDR PV PF

(
1
Fi
+

1
Ci

)
PV

(
1

Mi
+

1
Ni

+1

)

Algorithm-Specific Optimisation. Algorithm-specific information in this context cov-
ers two algorithms: YOLO and Faster RCNN, and backbone CNN architecture can-
didates include VGG16, ZFNet, and GoogLeNet. At this level of optimisation, the
whole application’s constraints such as system capacity and real-time requirement will
be taken into consideration.

Our approach is to provide two strategies: speed priority and accuracy priority
for optimisation. For any object detection application, speed priority means that real-
time response is important, while accuracy priority means that the estimated detection
accuracy is beyond 70%. According to [9], the YOLO algorithm is suitable for speed
priority, and Faster RCNN is for accuracy priority.

When we select the algorithm-specific optimisation strategy and which algorithm
to use, the optimisation flow will iterate all the possible backbone CNN architectures
for each algorithm, and will try to use these configurations to get the optimal result and
will then compare them in order to select the best CNN architecture.

9

6 Evaluation

This section describes our evaluation and performance analysis of the hardware design
with specific resource constraints and network architecture. We choose to measure the
performance for the YOLO algorithm with the GoogLeNet backbone.
Implementation Details. We briefly introduce the implementation detail of our hard-
ware design. We present the overall architecture in Section 3. The proposed architecture
and optimisation flow can target various FPGA platforms. To illustrate our approach,
our hardware design is built for the Xilinx Zynq platform (zc706), which contains two
main components: PS and PL. PS is the processing system with an ARM CPU and a
DDR memory, while PL refers to the FPGA, which contains logic resources, on-chip
memory, and DMA support. In our case, CNN hardware design targets the PL part, with
some complex software algorithms running on the PS part. We use the AXI to connect
between PS and PL.

The CNN hardware design can be split into conv kernel and fc kernel. They are
parameterised and are connected to each other through FIFO. They use our stream-
ing protocol to control and schedule tasks. Coefficients and other external data will be
loaded through DDR from the external memory.

 0

 0.5

 1

 1.5

 2

fc1 fc4 fc8 conv1 conv4 conv8 total1 total4 total8

n
o
rm

a
lis

e
d
 r

e
s
o
u
rc

e
 u

s
a
g
e

Measured LUTs
Estimated LUTs

Measured FFs
Estimated FFs

Measured BRAMs
Estimated BRAMs

Measured DSPs
Estimated DSPs

Fig. 3. Design model accuracy measured with the synthesis report and the model estimation re-
sults. Resource usage is normalised against available resources in the target chip. The last digit
of each label is the PV value.

Design Model Accuracy. We estimate the design model accuracy from the synthesis
report and the estimated resource usage on 3 different cases: PV = 1,4,8 (Fig. 3). Here
the kernel size of the conv module is 7×7, and the column number of the fc module
is 4096. The estimation is based on equations in Table 3. The design model accuracy is
beyond 85%, and therefore it can support our optimisation flow. The dotted line stands
for available resources in our target chip. Thus, we select PV = 4 in this design.

10

Algorithm Evaluation. Based on the optimisation model, we derive the optimal design
parameters for both YOLO (GoogLeNet) and Faster RCNN (VGG16), and predict the
best performance for these two algorithms. In addition, we also evaluate the software
performance on x86 CPU and ARM CPU. We use Darknet [8] and Caffe [6] as the
software reference for YOLO and Faster RCNN evaluation. Results are listed in Table 4.

Based on the optimization model, we make a few decisions. (1) Input and output
buffers are necessary so that the design has the appropriate bandwidth. (2) For the 1x1
kernel, the 25 BRAM requirement is not the major limitation in resource usage. (3) At
current precision, the DSPs are the limiting resources for conv kernels. We can set
PV = 4 and PP = PF = 1 in this case. (4) fc kernel also uses PV = 4 to coordinate with
the conv kernel’s output.

We estimate that the overall execution time for YOLO (GoogLeNet) is 0.744 sec-
ond, and for Faster RCNN (VGG16) is 0.875 second. Compared with the best software
performance on ARM (36.92 seconds), the speed-up is 49.6 times. Even compared with
the x86 CPU there is a 1.5 times speed-up. Although the GPU version is much faster
than our implementation, the GPU (Titan X) is not suitable for embedded systems. Also
the total energy cost of the FPGA version (0.868J) is much smaller than the GPU ver-
sion (23J).

Table 4. Algorithm evaluation on 4 platforms

x86 CPU ARM CPU FPGA GPU

Platform Intel Core i7 ARMv7-A Zynq
(zc706)

GeForce
Titan X

Num. of Cores 8 (4 used) 2 (2 used) - -
Compiler GNU GCC GNU GCC Vivado

(2016.2)
CUDA
(v7.5)

Compile Flags -Ofast -Ofast - -Ofast

Clock 3.07 GHz Up to 1GHz 200 MHz 1531 MHz
Technology 45 nm 28 nm 24 nm 16 nm

YOLO (Tiny) 1.12s 36.92s - 0.0037s
(178W)

YOLO (GoogLeNet) 13.54s 430.6s 0.744s
(1.167W)

0.010s
(230W)

Faster RCNN (ZF) 2.547s 71.53s - 0.043s
(69W)

Faster RCNN (VGG16) 6.224s Failed 0.875s
(1.167W)

0.062s
(81W)

7 Summary

This paper presents our novel approach to optimise CNN-based object detection al-
gorithms on embedded FPGA platforms, which consists of a design model for the
basic CNN hardware architecture, and an optimisation flow which takes into account
both FPGA optimisation strategies and algorithm-specific optimisation strategies. Our

11

evaluation shows that an optimised hardware design for the YOLO algorithm with
GoogLeNet backbone can reach 49.6 times speed-up compared with software on ARM.
Also our design model accuracy is above 85%. Future work includes evaluating the ob-
ject detection application with multiple real world datasets, introducing automatic data
quantisation, and enhancing the optimisation flow to support CNN training.

Acknowledgement

The support of the European Union Horizon 2020 Research and Innovation Programme
under grant agreement number 671653, UK EPSRC (EP/I012036/1, EP/L00058X/1,
EP/L016796/1 and EP/N031768/1), Corerain Technologies, the State Key Laboratory
of Space-Ground Integrated Information Technology, and Xilinx, Inc. is gratefully ac-
knowledged.

References

1. Bosi, B., et al.: Reconfigurable pipelined 2-d convolvers for fast digital signal processing.
IEEE Transactions on VLSI Systems 7(3), 299–308 (1999)

2. Chakradhar, S., et al.: A dynamically configurable coprocessor for convolutional neural net-
works. In: ISCA (2010)

3. Dai, J., et al.: R-FCN: Object detection via region-based fully convolutional networks. arXiv
preprint arXiv:1605.06409 (2016)

4. Farabet, C., et al.: NeuFlow: A Runtime-Reconfigurable Dataflow Processor for Vision. In:
ECVW (2011)

5. Girshick, R.: Fast R-CNN. In: ICCV (2015)
6. Jia, Y., et al.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093 (2014)
7. Qiu, J., et al.: Going Deeper with Embedded FPGA Platform for Convolutional Neural Net-

work. In: FPGA (2016)
8. Redmon, J.: Darknet: Open source neural networks in c. http://pjreddie.com/darknet/ (2013–

2016)
9. Redmon, J., et al.: You Only Look Once: Unified, Real-Time Object Detection (2015)

10. Ren, S., et al.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. NIPS (2015)

11. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image
Recognition. ImageNet Challenge (2014)

12. Suda, N., et al.: Scalable and Modularized RTL Compilation of Convolutional Neural Net-
works onto FPGA. In: FPL (2016)

13. Suda, N., et al.: Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale
Convolutional Neural Networks. In: FPGA (2016)

14. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
15. Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. In: ECCV

(2014)
16. Zhang, C., et al.: Optimizing FPGA-based Accelerator Design for Deep Convolutional Neu-

ral Networks. FPGA (2015)

12

